
Chapter 7. Basic

Processing Unit

Overview

⚫ Instruction Set Processor (ISP)

⚫ Central Processing Unit (CPU)

⚫ A typical computing task consists of a series

of steps specified by a sequence of machine

instructions that constitute a program.

⚫ An instruction is executed by carrying out a

sequence of more rudimentary operations.

Some Fundamental

Concepts

Fundamental Concepts

⚫ Processor fetches one instruction at a time and

perform the operation specified.

⚫ Instructions are fetched from successive memory

locations until a branch or a jump instruction is

encountered.

⚫ Processor keeps track of the address of the memory

location containing the next instruction to be fetched

using Program Counter (PC).

⚫ Instruction Register (IR)

Executing an Instruction

⚫ Fetch the contents of the memory location pointed

to by the PC. The contents of this location are

loaded into the IR (fetch phase).

IR ← [[PC]]

⚫ Assuming that the memory is byte addressable,

increment the contents of the PC by 4 (fetch phase).

PC ← [PC] + 4

⚫ Carry out the actions specified by the instruction in

the IR (execution phase).

Processor Organization

lines
Data

Address
lines

bus
Memory

Carry -in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

bus

IR

TEMP

R0

control
ALU

lines

Control signals

R n 1-()

Instruction

decoder and

Internal processor

control logic

A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

Datapath

Textbook Page 413

MDR HAS

TWO INPUTS

AND TWO

OUTPUTS

Executing an Instruction

⚫ Transfer a word of data from one processor
register to another or to the ALU.

⚫ Perform an arithmetic or a logic operation
and store the result in a processor register.

⚫ Fetch the contents of a given memory
location and load them into a processor
register.

⚫ Store a word of data from a processor
register into a given memory location.

Register Transfers

BA

Z

ALU

Y in

Y

Z in

Z out

R iin

R i

R iout

bus
Internal processor

Constant 4

MUX

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

Register Transfers

⚫ All operations and data transfers are controlled by the processor clock.

Figure 7.3. Input and output gating for one register bit.

D Q

Q

Clock

1

0

Riout

Ri in

Bus

Figure 7.3. Input and output gating for one register bit.

Performing an Arithmetic or

Logic Operation

⚫ The ALU is a combinational circuit that has no

internal storage.

⚫ ALU gets the two operands from MUX and bus.

The result is temporarily stored in register Z.

⚫ What is the sequence of operations to add the

contents of register R1 to those of R2 and store the

result in R3?

1. R1out, Yin

2. R2out, SelectY, Add, Zin

3. Zout, R3in

Fetching a Word from Memory

⚫ Address into MAR; issue Read operation; data into MDR.

MDR

Memory -bus

Figure 7.4. Connection and control signals for register MDR.

data lines
Internal processor

busMDRoutMDRoutE

MDRinMDR inE

Figure 7.4. Connection and control signals for register MDR.

Fetching a Word from Memory

⚫ The response time of each memory access varies
(cache miss, memory-mapped I/O,…).

⚫ To accommodate this, the processor waits until it
receives an indication that the requested operation
has been completed (Memory-Function-Completed,
MFC).

⚫ Move (R1), R2
➢ MAR ← [R1]

➢ Start a Read operation on the memory bus

➢ Wait for the MFC response from the memory

➢ Load MDR from the memory bus

➢ R2 ← [MDR]

Timing

Figure 7.5. Timing of a memory Read operation.

1 2

Clock

Address

MR

Data

MFC

Read

MDRinE

MDRout

Step 3

MAR in

Assume MAR

is always available

on the address lines

of the memory bus.

R2 ← [MDR]

MAR ← [R1]

Start a Read operation on the memory bus

Wait for the MFC response from the memory

Load MDR from the memory bus

Execution of a Complete

Instruction

⚫ Add (R3), R1

⚫ Fetch the instruction

⚫ Fetch the first operand (the contents of the

memory location pointed to by R3)

⚫ Perform the addition

⚫ Load the result into R1

Architecture

BA

Z

ALU

Y in

Y

Z in

Z out

R iin

R i

R iout

bus
Internal processor

Constant 4

MUX

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

Execution of a Complete

Instruction
Step Action

1 PCout , MAR in , Read,Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDRout , IR in

4 R3out , MAR in , Read

5 R1out , Yin , WMF C

6 MDRout , SelectY,Add, Zin

7 Zout , R1in , End

Figure 7.6. Control sequencefor executionof the instruction Add (R3),R1.

lines
Data

Address
lines

bus
Memory

Carry -in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

bus

IR

TEMP

R0

control
ALU

lines

Control signals

R n 1-()

Instruction

decoder and

Internal processor

control logic

A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

Add (R3), R1

Execution of Branch

Instructions

⚫ A branch instruction replaces the contents of

PC with the branch target address, which is

usually obtained by adding an offset X given

in the branch instruction.

⚫ The offset X is usually the difference between

the branch target address and the address

immediately following the branch instruction.

⚫ Conditional branch

Execution of Branch

Instructions

Step Action

1 PC out , MAR in , Read, Select4, Add, Z in

2 Z out, PC in , Y in , WMF C

3 MDR out , IR in

4 Offset-field-of-IR out, Add, Z in

5 Z out, PC in , End

Figure 7.7. Control sequence for an unconditional branch instruction.

Multiple-Bus OrganizationMemory bus
data lines

Figure 7.8. Three-bus organization of the datapath.

Bus A Bus B Bus C

Instruction
decoder

PC

Register

f ile

Constant 4

ALU

MDR

A

B

R

M
U

X

Incrementer

Address
lines

MAR

IR

Multiple-Bus Organization

⚫ Add R4, R5, R6

Step Action

1 PC out, R=B, MAR in , Read, IncPC

2 WMF C

3 MDR outB , R=B, IR in

4 R4 outA , R5 outB , SelectA, Add, R6 in , End

Figure 7.9. Control sequence for the instruction. Add R4,R5,R6,

for the three-bus organization in Figure 7.8.

Quiz

⚫ What is the control
sequence for
execution of the
instruction

Add R1, R2

including the
instruction fetch
phase? (Assume
single bus
architecture)

lines
Data

Address
lines

bus
Memory

Carry -in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

bus

IR

TEMP

R0

control
ALU

lines

Control signals

R n 1-()

Instruction

decoder and

Internal processor

control logic

A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

Hardwired Control

Overview

⚫ To execute instructions, the processor must

have some means of generating the control

signals needed in the proper sequence.

⚫ Two categories: hardwired control and

microprogrammed control

⚫ Hardwired system can operate at high speed;

but with little flexibility.

Control Unit Organization

Figure 7.10. Control unit organization.

CLK
Clock

Control step

IR
encoder

Decoder/

Control signals

codes

counter

inputs

Condition

External

Detailed Block Description

External
inputs

Figure 7.11. Separation of the decoding and encoding functions.

Encoder

Reset
CLK

Clock

Control signals

counter

Run End

Condition
codes

decoder

Instruction

Step decoder

Control step

IR

T1 T2 Tn

INS1

INS2

INSm

Generating Zin

⚫ Zin = T1 + T6 • ADD + T4 • BR + …

Figure 7.12. Generation of the Zin control signal for the processor in Figure 7.1.

T 1

AddBranch

T4 T
6

Generating End

⚫ End = T7 • ADD + T5 • BR + (T5 • N + T4 • N) • BRN +…

Figure 7.13.Generation of the End control signal.

T7

Add Branch
Branch<0

T5

End

NN

T4T5

A Complete Processor

Instruction
unit

Integer

unit

Floating-point

unit

Instruction
cache

Data
cache

Bus interface

Main
memory

Input/
Output

Sy stem bus

Processor

Figure 7.14. Block diagram of a complete processor.

Microprogrammed

Control

Overview

⚫ Control signals are generated by a program similar to machine
language programs.

⚫ Control Word (CW); microroutine; microinstruction

P
C

in

P
C

o
u

t

M
A

R
in

R
e

a
d

M
D

R
o

u
t

IR
in

Y
in

S
e

le
c
t

A
d
d

Z
in

Z
o

u
t

R
1 o

u
t

R
1 i

n

R
3 o

u
t

W
M

F
C

E
n
d

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

0

0

Micro -
instruction

1

2

3

4

5

6

7

Figure 7.15 An example of microinstructions for Figure 7.6.

Overview

Step Action

1 PCout , MAR in , Read,Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDRout , IR in

4 R3out , MAR in , Read

5 R1out , Yin , WMF C

6 MDRout , SelectY,Add, Zin

7 Zout , R1in , End

Figure 7.6. Control sequencefor executionof the instruction Add (R3),R1.

Overview

⚫ Control store

Figure 7.16. Basic organization of a microprogrammed control unit.

store
Control

generator

Starting
address

CW

Clock PC

IR

One function

cannot be carried

out by this simple

organization.

Overview

⚫ The previous organization cannot handle the situation when the control
unit is required to check the status of the condition codes or external
inputs to choose between alternative courses of action.

⚫ Use conditional branch microinstruction.

Address Microinstruction

0 PC out , MAR in , Read, Select4, Add, Z in

1 Z out , PC in , Y in , WMF C

2 MDR out , IR in

3 Branch to starting address of appropriate microroutine
. .

25 If N=0, then branch to microinstruction 0

26 Offset-field-of-IR out , SelectY, Add, Z in

27 Z out , PC in , End

Figure 7.17. Microroutine for the instruction Branch<0.

Overview

Figure 7.18. Organization of the control unit to allow

conditional branching in the microprogram.

Control
store

Clock

generator

Starting and
branch address Condition

codes

inputs
External

CW

IR

PC

Microinstructions

⚫ A straightforward way to structure
microinstructions is to assign one bit position
to each control signal.

⚫ However, this is very inefficient.

⚫ The length can be reduced: most signals are
not needed simultaneously, and many signals
are mutually exclusive.

⚫ All mutually exclusive signals are placed in
the same group in binary coding.

Partial Format for the

Microinstructions

F2 (3 bits)

000: No transf er

001: PCin
010: IRin

011: Zin

100: R0in
101: R1in
110: R2in

111: R3in

F1 F2 F3 F4 F5

F1 (4 bits) F3 (3 bits) F4 (4 bits) F5 (2 bits)

0000: No transf er

0001: PCout

0010: MDRout

0011: Zout

0100: R0out

0101: R1out

0110: R2out

0111: R3out

1010: TEMPout

1011: Of f setout

000: No transf er

001: MARin

010: MDRin

011: TEMPin

100: Yin

0000: Add

0001: Sub

1111: XOR

16 ALU
f unctions

00: No action

01: Read

10: Write

F6 F7 F8

F6 (1 bit) F7 (1 bit) F8 (1 bit)

0: SelectY

1: Select4

0: No action

1: WMFC

0: Continue

1: End

Figure 7.19. An example of a partial format for field-encoded microinstructions.

Microinstruction

What is the price paid for

this scheme?

Further Improvement

⚫ Enumerate the patterns of required signals in

all possible microinstructions. Each

meaningful combination of active control

signals can then be assigned a distinct code.

⚫ Vertical organization

⚫ Horizontal organization

Microprogram Sequencing

⚫ If all microprograms require only straightforward
sequential execution of microinstructions except for
branches, letting a μPC governs the sequencing
would be efficient.

⚫ However, two disadvantages:
➢ Having a separate microroutine for each machine instruction results

in a large total number of microinstructions and a large control store.

➢ Longer execution time because it takes more time to carry out the
required branches.

⚫ Example: Add src, Rdst

⚫ Four addressing modes: register, autoincrement,
autodecrement, and indexed (with indirect forms).

- Bit-ORing

- Wide-Branch Addressing

- WMFC

OP code 0 1 0 Rsrc Rdst

Mode

Contents of IR

034781011

Figure 7.21. Microinstruction for Add (Rsrc)+,Rdst.

Note:Microinstruction at location 170 is not executed for this addressing mode.

Address Microinstruction
(octal)

000 PCout, MAR in, Read, Select 4, Add, Z in

001 Z out, PC in, Y in, WMFC

002 MDR out, IR in

003 Branch {PC 101 (from Instruction decoder);

PC 5,4 [IR 10,9]; PC3

121 Rsrcout, MAR in , Read, Select4, Add, Z in

122 Z out, Rsrc in

123

170 MDR out, MAR in, Read, WMFC

171 MDR out, Y in

172 Rdstout, SelectY, Add, Z in

173 Z out, Rdstin, End

[IR 10] [IR 9] [IR 8]}

Branch {PC 170; PC0 [IR 8]}, WMFC

Microinstructions with Next-

Address Field

⚫ The microprogram we discussed requires several
branch microinstructions, which perform no useful
operation in the datapath.

⚫ A powerful alternative approach is to include an
address field as a part of every microinstruction to
indicate the location of the next microinstruction to
be fetched.

⚫ Pros: separate branch microinstructions are virtually
eliminated; few limitations in assigning addresses to
microinstructions.

⚫ Cons: additional bits for the address field (around
1/6)

Microinstructions with Next-

Address Field
Figure 7.22. Microinstruction-sequencing organization.

Condition
codes

IR

Decoding circuits

Control store

Next address

Microinstruction decoder

Control signals

Inputs
External

AR

 I R

F1 (3 bits)

000: No transf er

001: PCout

010: MDRout

011: Zout

100: Rsrcout

101: Rdstout

110: TEMPout

F0 F1 F2 F3

F0 (8 bits) F2 (3 bits) F3 (3 bits)

000: No transf er

001: PCin
010: IRin
011: Zin
100: Rsrcin

000: No transf er

001: MARin

F4 F5 F6 F7

F5 (2 bits)F4 (4 bits) F6 (1 bit)

0000: Add

0001: Sub

0: SelectY

1: Select4

00: No action

01: Read

Microinstruction

Address of next

microinstruction

101: Rdstin

010: MDRin

011: TEMPin

100: Yin

1111: XOR

10: Write

F8 F9 F10

F8 (1 bit)

F7 (1 bit)

F9 (1 bit) F10 (1 bit)

0: No action

1: WMFC

0: No action

1: ORindsrc

0: No action

1: ORmode

0: NextAdrs

1: InstDec

Figure 7.23.Format for microinstructions in the example of Section 7.5.3.

Implementation of the

Microroutine
(See Figure 7.23 for encoded signals.)

Figure 7.24. Implementation of the microroutine of Figure 7.21 using a

1

0

1

11110

0111110

001

001

1

21 0

00

0

00

0

0

0

0

0

0

0

0

0

0

0 0

0

0

00

0 0

0101

110

37

7

00000000

0 1111

110

0

0

0

17

07

F9

0

0

0

0

0

0

F10

0

0

0

0

0

0

00

0

0

0

0

0

0

F8F7F6F5F4

000 0 0 0 0 0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0 1

1

0

0

0 0

1

0

0

0

10000

0000

1100000

10

0

0

0

0

0

0

1

0 0

0

0

0

0

0

00 01

000

000

001

110

100

10

F2

1

110 0 0 0 0 0

1

1

221

0

11110

111 00

1

1

2

0

21

0

00

address

Octal

111 00000

1 0000000

10000000

F0 F1

0

0 0 10 0

010

010

0 11

001

110

100

0

0

0

1

1

0

1

F3

 next-microinstruction address field.

011000 0 0 0 0 00 00 00000 0 0 0 0 030 0 00 0 0

decoder

Microinstruction

Control store

Next address F1 F2

Other control signals

F10F9F8

Decoder

Decoder

circuits
Decoding

Condition

External

codes

inputs

Rsrc RdstIR

Rdstout

Rdstin

Rsrcout

Rsrcin

AR

InstDecout

ORmode

ORindsrc

R15in R15out R0in R0out

Figure 7.25. Some details of the control-signal-generating circuitry.

bit-ORing

Further Discussions

⚫ Prefetching

⚫ Emulation

